Multiplicity and concentration of solutions for a fractional $ p $-Kirchhoff type equation

نویسندگان

چکیده

This paper is concerned with the following fractional $ p $-Kirchhoff equation \begin{document}$ \begin{eqnarray*} \left\{ \begin{array}{ll} \varepsilon ^{sp}M\left( {\varepsilon ^{sp - N}}\iint_{\mathbb{R}^{2N}}\frac{{{{\left| {u(x) u(y)} \right|}^p}}}{{{{\left| {x y} \right|}^{N + sp}}}}dxdy\right)(-\Delta)_p^su V(x){u^{p 1}} = {u^{p_s^* 1}}+f(u), \\ u>0, \ \mbox{in}\ {\mathbb{R}^N}, \end{array} \right. \end{eqnarray*} $\end{document} where \varepsilon>0 a parameter, M(t) a+bt^{\theta-1} a>0 $, b>0 \theta>1 (-\Delta)_p^s denotes $-Laplacian operator 0<s<1 and 1<p<\infty N>sp \theta p<p_s^* p_s^* \frac{Np}{N-sp} critical Sobolev exponent, f superlinear continuous function subcritical growth V positive potential. Using penalization method Ljusternik-Schnirelmann theory, we study existence, multiplicity concentration of nontrivial solutions for small enough.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence and multiplicity of solutions for a class of fractional Kirchhoff-type problem∗

In this paper, we establish the existence and multiplicity of solutions to the following fractional Kirchhoff-type problem M(∥u∥)(−∆)u = f(x, u(x)), in Ω u = 0 in R\Ω, where N > 2s with s ∈ (0, 1), Ω is an open bounded subset of R with Lipschitz boundary, M and f are two continuous functions, and (−∆) is a fractional Laplace operator. Our main tools are based on critical point theorems and the ...

متن کامل

Existence and multiplicity of positive solutions for a class of p(x)-Kirchhoff type equations

* Correspondence: [email protected] Department of Mathematics, Northwest Normal University, Lanzhou 730070, P. R. China Abstract In this article, we study the existence and multiplicity of positive solutions for the Neumann boundary value problems involving the p(x)-Kirchhoff of the form ⎪⎨⎪⎩ −M (∫ 1 p(x) (|∇u|p(x) + λ|u|p(x))dx ) (div (|∇u|p(x)−2∇u) − λ|u|p(x)−2u) = f (x, u) in , ∂u ∂v = 0...

متن کامل

Multiplicity of Nontrivial Solutions for Kirchhoff Type Problems

Copyright q 2010 Bitao Cheng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. By using variational methods, we study the multiplicity of solutions for Kirchhoff type problems −a b Ω |∇u| 2 Δu f x, u, in Ω; u 0, on ∂Ω. Existe...

متن کامل

Multiplicity of Solutions for Nonlocal Elliptic System of p, q -Kirchhoff Type

and Applied Analysis 3 where F x, t ∫ t 0 f x, s ds; one positive solutions for 1.7 was obtained. It is well known that condition AR plays an important role for showing the boundedness of Palais-Smale sequences. More recently, Corrêa and Nascimento in 13 studied a nonlocal elliptic system of p-Kirchhoff type

متن کامل

Existence and multiplicity of positive solutions for a coupled system of perturbed nonlinear fractional differential equations

In this paper, we consider a coupled system of nonlinear fractional differential equations (FDEs), such that both equations have a particular perturbed terms. Using emph{Leray-Schauder} fixed point theorem, we investigate the existence and multiplicity of positive solutions for this system.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete and Continuous Dynamical Systems

سال: 2023

ISSN: ['1553-5231', '1078-0947']

DOI: https://doi.org/10.3934/dcds.2023021